Global Existence of Solutions to the Fowler Equation in a Neighbourhood of Travelling-Waves
نویسنده
چکیده
The study of mechanisms that allow the formation of structures such as sand dunes and ripples at the bottom of a fluid flow plays a crucial role in the understanding of coastal dynamics. The modeling of these phenomena is particularly complex since we must not only solve the Navier-Stokes or Saint-Venant equations with equation for sediment transport, but also take into account the evolution of the bottom. Instead of solving the whole system fluid flow, free surface and free bottom, nonlocal models of fluid flow interacting with the bottom were introduced in 1, 2 . Among these models, we are interested in the following nonlocal conservation law 1, 3 :
منابع مشابه
Traveling Waves of Some Symmetric Planar Flows of Non-Newtonian Fluids
We present some variants of Burgers-type equations for incompressible and isothermal planar flow of viscous non-Newtonian fluids based on the Cross, the Carreau and the power-law rheology models, and on a symmetry assumption on the flow. We numerically solve the associated traveling wave equations by using industrial data and in order to validate the models we prove existence and uniqueness of ...
متن کاملOn the Analysis of Travelling Waves to a Nonlinear Flux Limited Reaction–diffusion Equation
In this paper we study the existence and qualitative properties of travelling waves associated to a nonlinear flux limited partial differential equation coupled to a Fisher–Kolmogorov–Petrovskii–Piskunov type reaction term. We prove the existence and uniqueness of finite speed moving fronts of C classical regularity, but also the existence of discontinuous entropy travelling wave solutions.
متن کاملBifurcation and stability of travelling waves in self-focusing planar wave guides
A mathematical problem arising in the modelling of travelling waves in self-focusing waveguides is studied. It involves a nonlinear Schrödinger equation in R. In the paraxial approximation, the travelling waves are interpreted as standing waves of the NLS. Local and global bifurcation results are established for the corresponding “stationary” equation. The combination of variational arguments w...
متن کاملPeriodic Travelling Waves of the Short Pulse Equation: Existence and Stability
We construct various periodic travelling wave solutions of the Ostrovsky/HunterSaxton/short pulse equation and its KdV regularized version. For the regularized short pulse model with small Coriolis parameter, we describe a family of periodic travelling waves which are a perturbation of appropriate KdV solitary waves. We show that these waves are spectrally stable. For the short pulse model, we ...
متن کاملExact travelling wave solutions for some complex nonlinear partial differential equations
This paper reflects the implementation of a reliable technique which is called $left(frac{G'}{G}right)$-expansion ethod for constructing exact travelling wave solutions of nonlinear partial differential equations. The proposed algorithm has been successfully tested on two two selected equations, the balance numbers of which are not positive integers namely Kundu-Eckhaus equation and Derivat...
متن کامل